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Integer Programming Problem

General linear programming problem (LP):

zLP = maxfcTx : Ax � b; x 2 Rn+g: (1)

Integer programming problem (IP):

zIP = maxfcTx : Ax � b; x 2 Zn+g: (2)

zLP � zIP since Zn+ � Rn+
P = fx : Ax � b; x 2 Rn+g; S = fx : Ax � b; x 2 Zn+g; S � P

Mixed integer programming problem (MIP):

zMIP = maxfcTx+ hTy : Ax+Gy � b; x 2 Rn+; y 2 Z
p
+g: (3)

Binary integer programming problem (BIP):

zBIP = maxfcTx : Ax � b; x 2 Bng;B = f0; 1g: (4)
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IP and MIP Modelling

1. Production Planning Problem
Variables: xi is a number of pcs. of i-th product
Constraints: x1; x2; : : : ; xn are integers

2. Cutting Stock Problem
Variables: xi is a number of pcs. of raw products being cut
according to i-th cutting pattern
Constraints: x1; x2; : : : ; xn are integers
The objective:

Minimization of pcs. of cut raw products
Minimization of total waste
Maximization of pcs. of assembled products (profit)
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IP and MIP Modelling

3. (0-1) Knapsack Problem
Definition: Budget b is available for investments in n considered
projects, where aj is the outlay for project j and cj is its expected
return. The objective is to choose a set of projects to maximize the
total expected return while not exceeding the budget.
Variables:

xj =

(
1 if the project j is selected
0 otherwise

(5)

Model:
max

nX
j=1

cjxj (6)

nX
j=1

ajxj � b (7)

xj 2 f0; 1g for j = 1; 2; : : : ; n (8)
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IP and MIP Modelling

4. Perfect Matching Problem
Definition: On a trip, n (even number) students are to be assigned
to double rooms. Satisfaction value cij is given for potential
roommates i and j. The objective is to assign students to maximize
the total satisfaction of the group.
Variables:

xij =

(
1 if students i and j are roommates
0 otherwise

i < j (9)

Model:
max

n�1X
i=1

nX
j=i+1

cijxij (10)

X
j<i

xji +
X
j>i

xij = 1 for i = 1; 2; : : : ; n (11)

xij 2 f0; 1g for
i = 1; 2; : : : ; n� 1

j = i+ 1; i+ 2; : : : ; n
(12)
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IP and MIP Modelling

5. Generalized Assignment Problem
Definition: Let us assume m stations taking petrol from
n terminals. Each station i can take petrol exactly from one
terminal and its requirement ai is given. Capacity of terminal j is
denoted by bj . If station i takes petrol from terminal j then cost cij
is calculated. The objective is to minimize the total cost.
Variables:

xij =

(
1 if station i takes petrol from terminal j
0 otherwise

(13)
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IP and MIP Modelling

5. Generalized Assignment Problem
Model:

min
mX
i=1

nX
j=1

cijxij (14)

nX
j=1

xij = 1 for i = 1; 2; : : : ;m (15)

mX
i=1

aixij � bj for j = 1; 2; : : : ; n (16)

xij 2 f0; 1g for
i = 1; 2; : : : ;m

j = 1; 2; : : : ; n
(17)
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IP and MIP Modelling

6. Linear Assignment Problem
Definition: There are n people available to carry out n jobs. Each
person is assigned to carry out exactly one job. Some individuals
are better suited to particular jobs than others, so there is an
estimated cost cij if person i is assigned to job j. The objective is
to find a minimum cost assignment.
Variables:

xij =

(
1 if person i does job j

0 otherwise
(18)
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IP and MIP Modelling

6. Linear Assignment Problem
Model:

min
nX
i=1

nX
j=1

cijxij (19)

nX
j=1

xij = 1 for i = 1; 2; : : : ; n (20)

nX
i=1

xij = 1 for j = 1; 2; : : : ; n (21)

xij 2 f0; 1g for
i = 1; 2; : : : ; n

j = 1; 2; : : : ; n
(22)
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IP and MIP Modelling

7. Bottleneck Assignment Problem
Definition: Let n jobs and n parallel machines be given. The
coefficient cij is the time needed for machine j to complete job i.
The objective is to minimize the latest completion time.
Variables:

xij =

(
1 if job i is assigned to machine j
0 otherwise

(23)

T = latest completion time (24)
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IP and MIP Modelling

7. Bottleneck Assignment Problem
Model:

min T (25)

cijxij � T for
i = 1; 2; : : : ; n

j = 1; 2; : : : ; n
(26)

nX
j=1

xij = 1 for i = 1; 2; : : : ; n (27)

nX
i=1

xij = 1 for j = 1; 2; : : : ; n (28)

xij 2 f0; 1g for
i = 1; 2; : : : ; n

j = 1; 2; : : : ; n
(29)
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IP and MIP Modelling

8. Quadratic Assignment Problem
Definition: A set of n facilities has to be allocated to a set of
n locations. The coefficient cij is the flow from facility i to facility
j and the value dkl is the distance from location k to location l.
The objective is to allocate each facility to a location such that the
total cost is minimized.
Variables:

xik =

(
1 if facility i is assigned to location k

0 otherwise
(30)
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IP and MIP Modelling

8. Quadratic Assignment Problem
Model:

min
nX
i=1

nX
j=1

nX
k=1

nX
l=1

cijdklxikxjl (31)

nX
k=1

xik = 1 for i = 1; 2; : : : ; n (32)

nX
i=1

xik = 1 for k = 1; 2; : : : ; n (33)

xik 2 f0; 1g for
i = 1; 2; : : : ; n

k = 1; 2; : : : ; n
(34)
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IP and MIP Modelling

8. Quadratic Assignment Problem
Linearization of the objective function:

yijkl =

8>><
>>:
1 if facility i is assigned to location k

and facility j is assigned to location l

0 otherwise
(35)

min
nX
i=1

nX
j=1

nX
k=1

nX
l=1

cijdklyijkl (36)

yijkl � xik + xjl � 1 for i; j; k; l = 1; 2; : : : ; n (37)
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IP and MIP Modelling

8. Quadratic Assignment Problem
Applications:

Placement Problem

The Airport Gate Assignment Problem
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IP and MIP Modelling

9. Set-Covering, Set-Packing and Set-Partitioning Problems
Definition: Let M = f1; 2; : : : ;mg be a finite set of tasks and
N = f1; 2; : : : ; ng a finite set of their providers. Incidence matrix A

is given with values aij = 1 if provider j is able to cover task i,
aij = 0 otherwise. If j-th provider is selected, cost cj is calculated.
The objective is to cover all tasks with the minimal total cost.

Let Mj �M be a set of tasks that provider j 2 N is able to cover.

We say that
F � N covers M if [j2FMj =M

F � N is a packing with respect to M if Mj \Mk = ∅ for all
j; k 2 F; j 6= k

F � N is a partition of M if F is both a covering and a packing
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IP and MIP Modelling

9. Set-Covering, Set-Packing and Set-Partitioning Problems
Variables:

xj =

(
1 if provider j is selected, i.e. j 2 F

0 otherwise
(38)

Model:
min

nX
j=1

cjxj (39)

(set-covering)
nX
j=1

aijxj � 1 for i = 1; 2; : : : ;m

(set-packing)
nX
j=1

aijxj � 1 for i = 1; 2; : : : ;m

(set-partitioning)
nX
j=1

aijxj = 1 for i = 1; 2; : : : ;m

(40)

xj 2 f0; 1g for j = 1; 2; : : : ; n (41)
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IP and MIP Modelling

9. Set-Covering, Set-Packing and Set-Partitioning Problems
Applications:

Let N = f1; 2; : : : ; ng be a set of potential sites for the location
of fire stations. A station placed at j costs cj . Let
M = f1; 2; : : : ;mg be a set of communities that have to be
protected. The subset of communities that can be protected
from j (e.g. reached from the fire station in 10 minutes) is Mj .
Assigning airline crews to flights.
Scheduling workers to shifts.
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IP and MIP Modelling

10. Facility Location Problem
Definition: A set of potential depots M = f1; 2; : : : ;mg and a set of
clients N = f1; 2; : : : ; ng are given. Suppose a facility located at i
has a capacity of ai and the j-th client has demand bj . Fixed cost
fi is associated with the use of depot i and transportation cost cij
is charged for shipping unit between location i and client j. The
objective is to decide which depots to open and what quantity to
transport between locations and clients such that the total cost is
minimized.
Variables:

xi =

(
1 if depot at location i is open
0 otherwise

(42)

yij = quantity transported from location i to client j (43)
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IP and MIP Modelling

10. Facility Location Problem
Model:

min
mX
i=1

nX
j=1

cijyij +
mX
i=1

fixi (44)

nX
j=1

yij � aixi for i = 1; 2; : : : ;m (45)

mX
i=1

yij = bj for j = 1; 2; : : : ; n (46)

xi 2 f0; 1g for i = 1; 2; : : : ;m (47)

yij 2 R+ for
i = 1; 2; : : : ;m

j = 1; 2; : : : ; n
(48)
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IP and MIP Modelling

11. Fixed-Cost Production Planning Problem
Definition: Suppose the possible production of n products on
n production lines (each product on exactly one PL). Fixed cost fi
has to be considered if PL i is used (i.e. product i is produced).
Unit profit ci is given for product i. Standard production planning
(capacity) constraints are defined. The objective is to maximize
total profit decreased by fixed cost.
Variables:

xi =

(
1 if product i is produced (on PL i)
0 otherwise

(49)

yi = quantity of product i being produced (50)

Jan Fábry Combinatorial Optimization 24 / 153



IP and MIP Modelling

11. Fixed-Cost Production Planning Problem
Model:

max
nX
i=1

ciyi �
nX
i=1

fixi (51)

(capacity constraints)
nX
i=1

aliyi � bl for l = 1; 2; : : : ;m (52)

yi �Mxi for i = 1; 2; : : : ; n (53)

xi 2 f0; 1g for i = 1; 2; : : : ; n (54)

yi 2 R+ for i = 1; 2; : : : ; n (55)

M = big number
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IP and MIP Modelling

12. Container Transportation Problem
Definition: Goods are directly transported from m sources to n

destinations. Supply ai of source i and demand bj of destination j

are given. Containers of capacity K are used for transport and
shipping cost cij is known for the transport of a container from
source i to destination j. The objective is to satisfy all demands at
the minimum total shipping cost.
Variables:

yij = quantity of goods transported from source i
to destination j

(56)

xij = number of containers used for the transport
of goods from source i to destination j

(57)
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IP and MIP Modelling

12. Container Transportation Problem
Model:

min
mX
i=1

nX
j=1

cijxij (58)

nX
j=1

yij � ai for i = 1; 2; : : : ;m (59)

mX
i=1

yij = bj for j = 1; 2; : : : ; n (60)

yij � Kxij for
i = 1; 2; : : : ;m

j = 1; 2; : : : ; n
(61)

yij 2 R+ for
i = 1; 2; : : : ;m

j = 1; 2; : : : ; n
(62)

xij 2 Z+ for
i = 1; 2; : : : ;m

j = 1; 2; : : : ; n
(63)
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IP and MIP Modelling

13. Bin Packing Problem
Definition 1: Suppose a set of n items that can be packed into
m containers. The weight wj and value cj of item j are given. Let
Ki be a weight capacity of container i. The objective is to
maximize the total value of all assigned items.
Variables:

xij =

(
1 if item j is assigned to container i
0 otherwise

(64)
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IP and MIP Modelling

13. Bin Packing Problem
Model:

max
mX
i=1

nX
j=1

cjxij (65)

mX
i=1

xij � 1 for j = 1; 2; : : : ; n (66)

nX
j=1

wjxij � Ki for i = 1; 2; : : : ;m (67)

xij 2 f0; 1g for
i = 1; 2; : : : ;m

j = 1; 2; : : : ; n
(68)
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IP and MIP Modelling

13. Bin Packing Problem
Definition 2: Suppose a set of n types of items that have to be
transported using m containers of identical weight capacity K. Let
wj be a weight of item type j and rj be a number of them to be
transported. The objective is to minimize a number of containers
used to transport all items.
Variables:

xi =

(
1 if container i is used
0 otherwise

(69)

yij = a number of items of type j being
transported in container i

(70)
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IP and MIP Modelling

13. Bin Packing Problem
Model:

min
mX
i=1

xi (71)

mX
i=1

yij = rj for j = 1; 2; : : : ; n (72)

nX
j=1

wjyij � Kxi for i = 1; 2; : : : ;m (73)

xi 2 f0; 1g for i = 1; 2; : : : ;m (74)

yij 2 Z+ for
i = 1; 2; : : : ;m

j = 1; 2; : : : ; n
(75)
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Graph Modelling

Introduction to Graph Theory
Graph is a set G = fV;Eg, where V is a set of vertices (nodes) and
E is a set of edges (arcs).
Undirected arc is a set of two vertices fi; jg.
Directed arc is an ordered pair of two vertices (i; j).
In undirected graph all arcs are undirected.
In directed graph (digraph) all arcs are directed.
Mixed graph contains both undirected and directed arcs.
Two nodes that are contained in an arc are adjacent.
Two arcs that share a node are adjacent.
An arc and a node contained in that arc are incident.
Degree of a node (in undirected graph) is a number of incident arcs.
In-degree of a node (in directed graph) is a number of incident arcs
in which the node is the terminal one.
Out-degree of a node (in directed graph) is a number of incident
arcs in which the node is the initial one.
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Graph Modelling

Introduction to Graph Theory
Walk from node i to node j is a sequence of nodes and arcs, where
i is the initial node and j is the terminal node (nodes and arcs may
be repeated).
Trail is a walk with no repeated arc.
Path is a trail with no repeated node.
Cycle is closed walk (the initial node is the terminal one).
In directed path (in directed graph) a direction of all arcs is
respected.
In undirected path (in directed graph) a direction of all arcs may
not be respected.
Undirected graph is connected if between each pair of nodes there
is a path.
Directed graph is connected if there is a directed or undirected
path between each pair of nodes.
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Graph Modelling

Introduction to Graph Theory
Directed graph is strongly connected if there is a directed path
between each pair of nodes.
Undirected graph is complete if there is an arc between each pair of
nodes.
Tree is a connected undirected graph with no cycles.
Subgraph of graph G = fV;Eg is a graph G0 = fV 0; E0g, where
V 0 � V and E0 � E.
Spanning tree of the graph G is a subgraph G0, where V 0 = V and
which is a tree.
Valued graph has numbers associated with nodes or/and arcs.
Hamiltonian cycle is a cycle that includes each node of the graph
exactly once.
Eulerian cycle includes each arc of the graph exactly once.
Eulerian trail is a trail that includes each arc of the graph.
Eulerian graph is a graph in which the Eulerian cycle can be found.
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Flow Problems

1. Maximum Flow Problem
Definition: Let G = fV;Eg be a digraph with the flow capacity kij
given for each arc (i; j). The objective is to identify the maximum
amount of flow that can occur from source node s to sink node d.
Variables: xij = flow from node i to node j (76)

F = total flow (77)

Model: max F (78)

X
j2V

(i; j)2E

xij �
X
j2V

(j; i)2E

xji =

8>><
>>:
F for i = s

0 for i 2 V n fs; dg

�F for i = d

(79)

xij � kij for (i; j) 2 E (80)

xij 2 R+ for (i; j) 2 E (81)

F 2 R+ (82)
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Flow Problems

1. Maximum Flow Problem
Alternative approach to modelling: Adding a dummy backward arc
from d to s with the capacity kds =M (big number).
Variables:

xij = flow from node i to node j (83)

Model:
max xds (84)X

j2V
(i; j)2E

xij �
X
j2V

(j; i)2E

xji = 0 for i 2 V (85)

xij � kij for (i; j) 2 E (86)

xij 2 R+ for (i; j) 2 E (87)
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Flow Problems

2. Minimum-Cost Flow Problem
Definition: Let G = fV;Eg be a digraph with the flow capacity kij
and unit cost cij given for each arc (i; j). The objective is to satisfy
required total flow F0 (from source node s to sink node d) with the
minimum total cost.
Variables: xij = flow from node i to node j (88)

Model: min
X
i2V

X
j2V

(i;j)2E

cijxij (89)

X
j2V

(i; j)2E

xij �
X
j2V

(j; i)2E

xji =

8>><
>>:
F0 for i = s

0 for i 2 V n fs; dg

�F0 for i = d

(90)

xij � kij for (i; j) 2 E (91)

xij 2 R+ for (i; j) 2 E (92)
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Flow Problems

3. Maximum Flow Cost-Limited Problem
Definition: Let G = fV;Eg be a digraph with the flow capacity kij
and unit cost cij given for each arc (i; j). The objective is to
identify the maximum amount of flow that can occur from source
node s to sink node d with respect to limited total cost C0.
Variables:

xij = flow from node i to node j (93)

F = total flow (94)

Model:
max F (95)X

i2V

X
j2V

(i;j)2E

cijxij � C0 (96)

and constraints (79) - (82)
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Flow Problems

4. Fixed-Charge Flow Problem
Definition: Let G = fV;Eg be a digraph with the flow capacity kij
given for each arc (i; j). Using arc (i; j) is charged cij . The
objective is to satisfy required total flow F0 (from source node s to
sink node d) with the minimum total cost.
Variables:

xij = flow from node i to node j (97)

yij =

(
1 if arc (i; j) is used
0 otherwise

(98)
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Flow Problems

4. Fixed-Charge Flow Problem
Model:

min
X
i2V

X
j2V

(i;j)2E

cijyij (99)

X
j2V

(i; j)2E

xij �
X
j2V

(j; i)2E

xji =

8>><
>>:
F0 for i = s

0 for i 2 V n fs; dg

�F0 for i = d

(100)

xij � kijyij for (i; j) 2 E (101)

yij 2 f0; 1g for (i; j) 2 E (102)
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Flow Problems

5. Multi-Commodity Flow Problem
Definition: Let G = fV;Eg be a digraph and Q be a set of
commodities that have to be transported from source node s to
sink node d. For each commodity q 2 Q, the required quantity F

q
0

is given. Total flow of all commodities through arc (i; j) should not
exceed its capacity kij . Unit cost cqij is defined for the flow of
commodity q through arc (i; j). The objective is to transport
required amounts of all commodities with the minimum total cost.
Variables:

x
q
ij = quantity of commodity q transported

from node i to node j
(103)
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Flow Problems

5. Multi-Commodity Flow Problem
Model:

min
X
q2Q

X
i2V

X
j2V

(i;j)2E

c
q
ijx

q
ij (104)

X
j2V

(i; j)2E

x
q
ij �

X
j2V

(j; i)2E

x
q
ji =

8>><
>>:
F
q
0 for i = s; q 2 Q

0 for i 2 V n fs; dg; q 2 Q

�F
q
0 for i = d; q 2 Q

(105)

X
q2Q

x
q
ij � kij for (i; j) 2 E (106)

x
q
ij 2 R+ for (i; j) 2 E; q 2 Q (107)
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Flow Problems

6. Transshipment Problem
Definition: Let G = fV;Eg be a digraph with three sets of nodes:
set of sources Vs, set of destinations Vd and set of transshipment
nodes Vt. Let ai > 0 be a supply of the product in source node
i 2 Vs and ai < 0 be a demand for the product in destination
i 2 Vd. For each transshipment node i 2 Vt it is valid ai = 0. Flow
capacity kij and unit cost cij are given for each arc (i; j). Demand
in all destinations has to be satisfied without exceeding any supply.
The objective is to minimize total flow cost. Suppose total demand
is equal to total supply.
Assumptions:

V = Vs[Vd[Vt and Vs\Vd\Vt = ∅ (108)X
i2Vs

ai +
X
i2Vd

ai = 0 (109)
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Flow Problems

6. Transshipment Problem
Variables:

xij = flow from node i to node j (110)

Model:
min

X
i2V

X
j2V

(i;j)2E

cijxij (111)

X
j2V

(i; j)2E

xij �
X
j2V

(j; i)2E

xji = ai for i 2 V (112)

xij � kij for (i; j) 2 E (113)

xij 2 R+ for (i; j) 2 E (114)

Jan Fábry Combinatorial Optimization 46 / 153



Flow Problems

7. Minimal Spanning Tree
Definition: Let G = fV;Eg be an undirected graph with cost cij
given for each arc fi; jg. The objective is to search a spanning tree
of G minimizing total cost.
Graph transformation: Set of undirected arcs E is transformed to
set of directed arcs A in the following way:
Each arc fi; jg 2 E is replaced with directed arcs (i; j) 2 A and
(j; i) 2 A, cji = cij .
Variables:

xij =

(
1 if arc (i; j) is selected
0 otherwise

(115)

yij = flow from node i to node j (116)
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Flow Problems

7. Minimal Spanning Tree
Model:

min
X
i2V

X
j2V

(i;j)2A

cijxij (117)

X
j2V

(1; j)2A

x1j = 0 (118)

X
j2V

(i; j)2A

xij = 1 for i 2 V n f1g (119)

X
j2V

(i; j)2A

yij �
X
j2V

(j; i)2A

yji = 1 for i 2 V n f1g (120)

0 � yij � (jV j � 1)xij for (i; j) 2 A (121)

xij 2 f0; 1g for (i; j) 2 A (122)
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Flow Problems

8. Minimal Steiner Tree
Definition: Let G = fV;Eg be a digraph, s 2 V be a source of the
signal (transmitter), D � V a set of users (receivers, destinations)
and T � V a set of transfer stations. Using cables, users can be
connected to transmitter directly or through the transfer stations.
Let cij be cost for connection (i; j) 2 E. The use of transfer station
i 2 T is charged fi. The objective is to connect all users to the
source with the minimal total cost.
Variables:

zi =

(
1 if node i is selected
0 otherwise

(123)

xij =

(
1 if arc (i; j) is selected
0 otherwise

(124)

yij = flow from node i to node j (125)
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Flow Problems

8. Minimal Steiner Tree
Model:

min
X
i2V

X
j2V

(i;j)2E

cijxij +
X
i2T

fizi (126)

zi = 1 for i 2 D (127)X
j2V

(i; j)2E

xij = zi for i 2 V n fsg (128)

X
j2V

(i; j)2E

yij �
X
j2V

(j; i)2E

yji = zi for i 2 V n fsg (129)

0 � yij � (jV j � 1)xij for (i; j) 2 E (130)

xij 2 f0; 1g for (i; j) 2 E (131)

zi 2 f0; 1g for i 2 T (132)
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Course Syllabus

1 Integer Programming Problem

2 IP and MIP Modelling

3 Graph Modelling
Flow Problems
Routing Problems

4 Formulations in Logical Variables

5 Polyhedral Theory

6 Solving Problems - Methods & Algorithms
Relaxation
Exact Methods
Computational Complexity
Heuristics & Metaheuristics
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Routing Problems

Classification of Problems
Network routing
▶ Node routing

Æ Travelling Salesman Problem (TSP) - infinite capacity of
vehicles

Æ Vehicle Routing Problem (VRP) - limited capacity of vehicles
▶ Arc routing

Æ Chinese Postman Problem (CPP)
Number of depots and vehicles
▶ One depot with one or multiple vehicles
▶ Multiple depots

Knowledge of customers
▶ Static problems - all customers are known in advance
▶ Dynamic problems - advanced customers and on-line customers

Objective
▶ Total travelled distance (total cost) minimization
▶ Total travelled time minimization
▶ Minimizing the longest time of completing all routes
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Routing Problems

1. Symmetric Travelling Salesman Problem
Definition: Let G = fU;Eg be a complete graph with distance cij
given for each arc fi; jg (matrix C is symmetric). Let node 1 be
a depot and jU j = n. The objective is to determine the minimal
Hamiltonian cycle.
Variables:

xij =

(
1 if arc fi; jg is used on the tour
0 otherwise

i < j (133)
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Routing Problems

1. Symmetric Travelling Salesman Problem
Model I (Dantzig, Fulkerson, Johnson):

min
X
i2U

X
j2U

i<j

cijxij (134)

X
j2U
j<i

xji +
X
j2U
j>i

xij = 2 for i 2 U (135)

X
i2U 0

X
j2U 0

i<j

xij � jU 0j � 1 for U 0 � U; 3 � jU 0j �

�
jU j

2

�
(136)

xij 2 f0; 1g for i; j 2 U; i < j: (137)
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Routing Problems

1. Symmetric Travelling Salesman Problem
Model II (Dantzig, Fulkerson, Johnson):

Constraints (136) are replaced with

X
i2U 0

X
j2UnU 0

i<j

xij +
X

i2UnU 0

X
j2U 0

i<j

xij � 1 for U 0 � U; 3 � jU 0j �

�
jU j

2

�

(138)
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Routing Problems

2. Asymmetric Travelling Salesman Problem
Definition: Let G = fU;Eg be a complete digraph with distance cij
given for each arc (i; j) (matrix C is generally asymmetric). Let
node 1 be a depot and jU j = n. The objective is to determine the
minimal Hamiltonian cycle.
Variables:

xij =

8>><
>>:
1 if a vehicle travels directly

between nodes i and j

0 otherwise
(139)

ui = dummy variable in sub-tours eliminating constraints (140)
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Routing Problems

2. Asymmetric Travelling Salesman Problem
Model (Miller, Tucker, Zemlin):

min
nX
i=1

nX
j=1

cijxij (141)

nX
j=1

xij = 1 for i = 1; 2; : : : ; n (142)

nX
i=1

xij = 1 for j = 1; 2; : : : ; n (143)

ui + 1� (n� 1)(1� xij) � uj for
i = 1; 2; : : : ; n

j = 2; 3; : : : ; n
(144)

xij 2 f0; 1g for
i = 1; 2; : : : ; n

j = 1; 2; : : : ; n
(145)

ui 2 R+ for i = 1; 2; : : : ; n (146)
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Routing Problems

3. Travelling Salesman Problem with Time Windows (TSPTW)
Definition: Let Asymmetric TSP be defined. Each node i has to be
visited within time interval hei; lii. A vehicle spends given time Si
at node i. Let dij be the traversal time between nodes i and j. The
objective is to determine the minimal Hamiltonian cycle (in terms
of distance) respecting all time windows.
Variables:

xij =

8>><
>>:
1 if a vehicle travels directly

between nodes i and j

0 otherwise
(147)

ti = time node i is visited (148)
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Routing Problems

3. Travelling Salesman Problem with Time Windows (TSPTW)
Model modification:

ei � ti � li for i = 2; 3; : : : ; n (149)

t1 = 0 (150)

ti 2 R+ for i = 2; 3; : : : ; n (151)

Variables ui are eliminated and constraints (144) are replaced with

ti + Si + dij �M(1� xij) � tj for
i = 1; 2; : : : ; n

j = 2; 3; : : : ; n
i 6= j (152)
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Routing Problems

4. Metric TSP (� - TSP)
Triangle inequality:

cij � cik + ckj for i; j; k = 1; 2; : : : ; n; i 6= j 6= k (153)

5. Euclidian TSP (Planar TSP)
Euclidian distance:

cij =
q
(Xi �Xj)

2 + (Yi � Yj)
2 for i; j = 1; 2; : : : ; n; i 6= j (154)

6. Open TSP
Instead of minimal Hamiltonian cycle, minimal open path through
all nodes is being searched for (a tour is not finished at the depot):

we set ci1 = 0 for i = 2; 3; : : : ; n (155)
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Routing Problems

7. Dynamic TSP
In static version of TSP, all customers are known in advance.
In dynamic version, on-line requests occur when optimal tour is
being realized.

Static TSP

Dynamic TSP

On-line request

Re-Optimization

Optimization

Vehicle tour
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Routing Problems

8. Vehicle Routing Problem
Definition: Let G = fU;Eg be a complete digraph with distance cij
given for each arc (i; j). Let node 1 be a depot, where one vehicle
with capacity V is available. Let jU j = n. Each customer i is
associated with request of size qi. The objective is to satisfy all
customers’ requirements and to minimize total length of the routes.
Variables:

xij =

8>><
>>:
1 if a vehicle travels directly

between nodes i and j

0 otherwise
(156)

ui = dummy variable for the balance of load on the vehicle (157)

Assumptions: nX
i=2

qi > V (158)

qi � V for i = 2; 3; : : : ; n (159)
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Routing Problems

8. Vehicle Routing Problem
Model:

min
nX
i=1

nX
j=1

cijxij (160)
nX
j=1

xij = 1 for i = 2; 3; : : : ; n (161)

nX
i=1

xij = 1 for j = 2; 3; : : : ; n (162)

ui + qj � V (1� xij) � uj for
i = 1; 2; : : : ; n

j = 2; 3; : : : ; n
(163)

ui � V for i = 2; 3; : : : ; n (164)

u1 = 0 (165)

xij 2 f0; 1g for
i = 1; 2; : : : ; n

j = 1; 2; : : : ; n
(166)

ui 2 R+ for i = 2; 3; : : : ; n (167)
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Routing Problems

9. Heterogenous Fleet Vehicle Routing Problem
Definition: Let VRP be defined with K types of vehicles available
in depot. For each type k its capacity Vk, available number pk and
cost coefficient dk are given. The objective is to satisfy all
customers’ requirements and to minimize total cost.
Variables:

xkij =

8>><
>>:
1 if a vehicle of type k travels directly

between nodes i and j

0 otherwise
(168)

ui = dummy variable for the balance of load on the vehicle (169)

Assumption: nX
i=2

qi �
KX
k=1

pkVk (170)

Notation:
V = max

k=1;2;:::;K
Vk (171)

Jan Fábry Combinatorial Optimization 64 / 153



Routing Problems

9. Heterogenous Fleet Vehicle Routing Problem
Model:

min
KX
k=1

nX
i=1

nX
j=1

dkcijx
k
ij (172)

KX
k=1

nX
j=1

xkij = 1 for i = 2; 3; : : : ; n (173)

nX
i=1

xkij =
nX
i=1

xkji for
j = 1; 2; : : : ; n

k = 1; 2; : : : ;K
(174)

nX
j=2

xk1j � pk for k = 1; 2; : : : ;K (175)

ui + qj � V (1� xkij) � uj for
i = 1; 2; : : : ; n

j = 2; 3; : : : ; n

k = 1; 2; : : : ;K

(176)
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Routing Problems

9. Heterogenous Fleet Vehicle Routing Problem
Model (continued):

ui �
nX
j=1

KX
k=1

xkijVk for i = 1; 2; : : : ; n (177)

u1 = 0 (178)

xkij 2 f0; 1g for
i = 1; 2; : : : ; n

j = 1; 2; : : : ; n

k = 1; 2; : : : ;K

(179)

ui 2 R+ for i = 2; 3; : : : ; n (180)
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Routing Problems

10. Vehicle Routing Problem with Time Windows (VRPTW)
If time windows are defined in the problem, variable ti and all
associated constraints are introduced similarly to TSPTW.

11. Split Delivery Vehicle Routing Problem (SDVRP)
The model of VRP cannot be used if 9i; qi > V . Such a request
must be split into multiple routes. Even in case qi � V;8i, it could
be advantageous to split deliveries. In the model, variable Qk

i

denotes a part of request qi covered on route k:

KX
k=1

Qk
i = qi for i = 2; 3; : : : ; n (181)
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Routing Problems

12. Pickup and Delivery Problem (PDP)
One-to-One PDP (Dial-a-Ride Problem, Messenger Problem)
Each request originates at one location and is destined for
another location. Vehicle routes start and end at a common
depot.
Many-to-Many PDP
Commodity may be picked up at one of many locations and
also be delivered to one of many locations.
One-to-Many-to-One PDP
Each customer receives a delivery originating at a common
depot and sends a pickup quantity to the depot.
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Routing Problems

13. Undirected Chinese Postman Problem
Definition: Let G = fU;Eg be an undirected and connected graph.
Cost cij for each arc fi; jg is given. The objective is to find
a minimum cost tour passing through each arc at least once.

Theorem: An undirected graph G is Eulerian if and only if G is
connected and the degrees of all of its nodes are even.

If G is not Eulerian, we will construct a supergraph G� of G such
that G� is Eulerian and includes an Eulerian tour that is shorter
than the Eulerian tour in any other supergraph of G.
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Routing Problems

13. Undirected Chinese Postman Problem
Variables in model I:

xij =

(
1 if arc fi; jg is copied in G�

0 otherwise
i < j (182)

yi = a dummy variable for the expression
of an even/odd number

(183)

Notation in model I:

U0 � U is a set of nodes with even degree
U1 � U is a set of nodes with odd degree
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Routing Problems

13. Undirected Chinese Postman Problem
Model I:

min
X

fi;jg2E
i<j

cijxij (184)

X
fj;ig2E
j<i

xji +
X

fi;jg2E
j>i

xij = 2yi for i 2 U0 (185)

X
fj;ig2E
j<i

xji +
X

fi;jg2E
j>i

xij = 2yi + 1 for i 2 U1 (186)

xij 2 f0; 1g for fi; jg 2 E; i < j (187)

yi 2 Z+ for i 2 U (188)
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Routing Problems

13. Undirected Chinese Postman Problem
Variables in model II:

xij = a number of copies of arc fi; jg in G� (189)

Model II:
min

X
fi;jg2E

cijxij (190)

xij + xji � 1 for fi; jg; fj; ig 2 E (191)X
fj;ig2E

xji =
X

fi;jg2E

xij for i 2 U (192)

xij 2 Z+ for fi; jg 2 E (193)
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Routing Problems

14. Directed Chinese Postman Problem
Definition: Let G = fU;Eg be a strongly connected digraph. Cost
cij for each arc (i; j) is given. The objective is to find a minimum
cost tour passing through each arc at least once.

Theorem: An directed graph G is Eulerian if and only if G is
strongly connected and in-degree of each node is equal to its
out-degree.

If G is not Eulerian, we will construct a supergraph G� of G such
that G� is Eulerian and includes an Eulerian tour that is shorter
than the Eulerian tour in any other supergraph of G.
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Routing Problems

14. Directed Chinese Postman Problem
Notation:

deg–
i = in-degree of node i

deg+
i = out-degree of node i

I = set of nodes i for which deg–
i > deg+

i

J = set of nodes j for which deg–
j < deg+

j

ai = deg–
i � deg+

i for i 2 I

bj = deg+
j � deg–

j for j 2 J

dij = the length of a shortest path from i 2 I to j 2 J

Variables:
xij = a number of extra times each arc of the shortest

path from i to j has to be traversed
(194)
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Routing Problems

14. Directed Chinese Postman Problem
Model:

min
X
i2I

X
j2J

dijxij (195)

X
j2J

xij = ai for i 2 I (196)

X
i2I

xij = bj for j 2 J (197)

xij 2 R+ for
i 2 I

j 2 J
(198)
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Routing Problems

15. Mixed Chinese Postman Problem (street sweeping)
CPP on mixed graph G = fU;Eg is defined.

16. Rural Postman Problem (mail delivery)
Let G = fU;Eg be a connected graph with set R � E of required
arcs that must be traversed at least once. The remaining arcs in
E nR are optional and may be used in the optimal solution.

17. Capacitated Arc Routing Problem (garbage collection)
Let G = fU;Eg be a connected graph with requirement qij given
for each arc fi; jg (for each required arc in a rural version).
Capacity of a vehicle covering requirements is limited. Multiple
tours have to be found without exceeding the vehicle capacity on
any of them.

18. Hierarchical Postman Problem (snow plowing)
Different priority levels are defined for arcs in the graph.
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Course Syllabus

1 Integer Programming Problem

2 IP and MIP Modelling

3 Graph Modelling
Flow Problems
Routing Problems

4 Formulations in Logical Variables

5 Polyhedral Theory

6 Solving Problems - Methods & Algorithms
Relaxation
Exact Methods
Computational Complexity
Heuristics & Metaheuristics
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Formulations in Logical Variables

1. Piecewise linear function
Definition: Let piecewise linear function f(y) be defined on a set of
intervals I1; I2; : : : ; Ir�1 denoted ha1; a2i; ha2; a3i; : : : ; har�1; ari.
For each interval bound ak, function value f(ak) is given.
Create a model of the function with the use of discrete variables.
Example:

a1 = 0

a2 = 15

a3 = 30

f(a1) = 10

f(a2) = 30

f(a3) = 20

0 15 30

10

20

30

y

f (y)
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Formulations in Logical Variables

1. Piecewise linear function
Variables:

x1 =

(
1 if y 2 h0; 15i
0 otherwise

(199)

x2 =

(
1 if y 2 h15; 30i
0 otherwise

(200)

�1; �2; �3 = dummy variables used
in convex combinations

(201)
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Formulations in Logical Variables

1. Piecewise linear function
Formulation:

If y 2 h0; 15i then

y = 0�1 + 15�2 = a1�1 + a2�2

f(y) = 10�1 + 30�2 = f(a1)�1 + f(a2)�2

)
�1 + �2 = 1

�1; �2 2 R+

(202)
If y 2 h15; 30i then

y = 15�2 + 30�3 = a2�2 + a3�3

f(y) = 30�2 + 20�3 = f(a2)�2 + f(a3)�3

)
�2 + �3 = 1

�2; �3 2 R+

(203)
x1 = 0) �1 = 0

x2 = 0) �3 = 0

) �1 � x1
�3 � x2
(�2 � x1 + x2)

�
(204)

* The inequality is important in case of more than 2 intervals being
defined (x1 = 0 ^ x2 = 0) �2 = 0):
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Formulations in Logical Variables

1. Piecewise linear function
Model:

y = 0�1 + 15�2 + 30�3 (205)

f(y) = 10�1 + 30�2 + 20�3 (206)

�1 � x1 (207)

�2 � x1 + x2 (208)

�3 � x2 (209)

x1 + x2 = 1 (210)

�1 + �2 + �3 = 1 (211)

x1; x2 2 f0; 1g (212)

�1; �2; �3 2 R+ (213)
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Formulations in Logical Variables

1. Piecewise linear function
Variables in general model:

xi =

(
1 if y 2 Ii = hai; ai+1i

0 otherwise
for i = 1; 2; : : : ; r � 1 (214)

�i = dummy variable used
in convex combinations

for i = 1; 2; : : : ; r (215)

General model:
y =

rX
i=1

ai�i (216)

f(y) =
rX
i=1

f(ai)�i (217)
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Formulations in Logical Variables

1. Piecewise linear function
General model (continued):

r�1X
i=1

xi = 1 (218)

rX
i=1

�i = 1 (219)

�1 � x1 (220)

�r � xr�1 (221)

�i � xi�1 + xi for i = 2; 3; : : : ; r � 1 (222)

xi 2 f0; 1g for i = 1; 2; : : : ; r � 1 (223)

�i 2 R+ for i = 1; 2; : : : ; r (224)
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Formulations in Logical Variables

2. Nonconvex solution space
Example: Let the following model be given. Use discrete variables
it could be solved as MIP model.

y1 + y2 � 40

y1 � 20 or y2 � 10

y1; y2 2 R+

Variables:
x1 =

(
1 if y1 � 20

0 otherwise
(225)

x2 =

(
1 if y2 � 10

0 otherwise
(226)
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Formulations in Logical Variables

2. Nonconvex solution space
Model:

y1 + y2 � 40 (227)

y1 � 20x1 (228)

y2 � 10x2 (229)

x1 + x2 � 1 (230)

y1; y2 2 R+ (231)

x1; x2 2 f0; 1g (232)
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Formulations in Logical Variables

3. Disjunctive constraints (either-or constraints)
Example: Three products can be produced on a machine either in
the sequence P1 ! P2 ! P3 or P3 ! P2 ! P1. Assume production
of Pi takes ti. Formulate the constraints for allowable production.
Variables:

yi = starting production time of product Pi (233)

x =

(
1 if sequence P1 ! P2 ! P3 is used
0 if sequence P3 ! P2 ! P1 is used

(234)
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Formulations in Logical Variables

3. Disjunctive constraints (either-or constraints)
Model:

y1 + t1 � y2 +M(1� x) (235)

y2 + t2 � y3 +M(1� x) (236)

y3 + t3 � y2 +Mx (237)

y2 + t2 � y1 +Mx (238)

yi 2 R+ for i = 1; 2; 3 (239)

x 2 f0; 1g (240)
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Formulations in Logical Variables

4. Disjunctive constraints (k out of m constraints must hold)
Example: Suppose a model includes a set of m constraints. Let
constraint i be defined as aTi y � bi. Assure exactly k of all
constraints must hold (k < m).
Dummy variables:

xi =

(
1 if constraint i is chosen
0 otherwise

(241)

Constraints:

aTi y � bi +M(1� xi) for i = 1; 2; : : : ;m (242)

mX
i=1

xi = k (243)
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Formulations in Logical Variables

5. Production level planning with Yes-or-No decision
Example: A company is considering whether to produce a new
product or not. If so, the level of production should be at least 500
units but not more than 1000 units. Formulate the decision
constraints.
Variables:

y = level of production (244)

x =

(
1 if the decision for production is yes
0 if the decision for production is no

(245)

Model:
500x � y � 1000x (246)

y 2 Z+ (247)

x 2 f0; 1g (248)
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Formulations in Logical Variables

6. Planning production on discrete levels
Example: A company decides to produce either 500 or 1000 or 2000
units of certain product. Formulate the decision constraints.
Variables:

y = level of production (249)

xi =

(
1 if the production is set on i-th level
0 otherwise

i = 1; 2; 3 (250)

Model:
y = 500x1 + 1000x2 + 2000x3 (251)

x1 + x2 + x3 = 1 (252)

y 2 Z+ (253)

xi 2 f0; 1g for i = 1; 2; 3 (254)
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Formulations in Logical Variables

7. Disjunctive variables (k out of n variables must be positive)
Example: A company is able to produce n types of products. It is
considering to produce only k of them. For each product i, maximal
production level qi is given. Formulate the decision constraints.
Variables:

yi = production level of product i (255)

xi =

(
1 if product i is produced
0 otherwise

(256)

Constraints:
1

M
xi � yi � qixi for i = 1; 2; : : : ; n (257)

nX
i=1

xi = k (258)
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Formulations in Logical Variables

7. Disjunctive variables (k out of n variables must be positive)
Example (equality condition): In previous example, production
levels of k selected products must be equal.
Additional variable:

w = production level of produced products (259)

Additional constraints:

w �M(1� xi) � yi � w +M(1� xi) for i = 1; 2; : : : ; n (260)
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Formulations in Logical Variables

8. Definition of a variable equal to the minimum of other variables
Example: Define a variable equal to the minimum of n variables.
Variables:

w = min(y1; y2; : : : ; yn) (261)

xi =

(
1 if w = yi

0 otherwise
(262)

Constraints:

w � yi � w +M(1� xi) for i = 1; 2; : : : ; n (263)

nX
i=1

xi � 1 (264)
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Formulations in Logical Variables

9. Simplifying Product of Binary Variables
Example: Simplify the maximization objective function x1x2x3
(all variables are binary) to use a linear model (MIP model).
Dummy variable:

w = x1x2x3 (265)

Model:
max w (266)

x1 + x2 + x3 � 2 � w (267)

w � xi for i = 1; 2; 3 (268)

xi 2 f0; 1g for i = 1; 2; 3 (269)

w 2 R+ (270)
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Polyhedral Theory

Feasible set of points in linear and integer programming

(LP) P = fx 2 Rn+ : Ax � bg (271)

(IP) S = fx 2 Zn+ : Ax � bg (272)
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2 3

1

2

3

4

4
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Polyhedral Theory

Definition: A polyhedron P � Rn is the set of points that satisfy
a finite number of linear inequalities: P = fx 2 Rn : Ax � bg.
A polyhedron is bounded if there exists � 2 R+ such that
P � fx 2 Rn : �� � xj � � for j = 1; 2; : : : ; ng. A bounded
polyhedron is called a polytope.

Definition: Given a set S � Rn, a point x 2 Rn is a convex
combination of points of S if there exists a finite set of points
fx1; x2; : : : ; xtg in S and � 2 Rt+ such that

Pt
i=1 �i = 1 and

x =
Pt

i=1 �ix
i.

Definition: T � Rn is a convex set if x1; x2 2 T implies that
�x1 + (1� �)x2 2 T for all � 2 h0; 1i.
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Polyhedral Theory

Definition: A convex hull of S, denoted by conv(S), is the set of all
points that are convex combinations of points in S.
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S � conv(S) � P
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Polyhedral Theory

Definition: The inequality �Tx � �0 is called a valid inequality for
S if it is satisfied by all points in S.
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Polyhedral Theory

Definition: If �Tx � �0 is a valid inequality for S and 9x0 2 S such
that �Tx0 = �0 we say that the inequality supports S. The set
F = fx 2 conv(S) : �Tx = �0g is called a face of conv(S). We say
that the inequality �Tx � �0 represents F .
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Polyhedral Theory

Definition: A face F of conv(S) is called a facet of conv(S) if
dim F = dim conv(S)� 1.
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Polyhedral Theory

Definition: The valid inequalities �Tx � �0 and 
Tx � 
0 are said
to be equivalent if 
 = �� and 
0 = ��0 for some � > 0.

Definition: Let �Tx � �0 and 
Tx � 
0 be two valid inequalities
for conv(S) that are not equivalent. If there exists � > 0 such that

 � �� and 
0 � ��0 then we say that 
Tx � 
0 dominates or is
stronger than �Tx � �0. We can also say that �Tx � �0 is
dominated or is weaker than 
Tx � 
0.

Observe that if 
Tx � 
0 dominates �Tx � �0 then
fx 2 Rn+ : 
Tx � 
0g � fx 2 Rn+ : �Tx � �0g.

Definition: A maximal valid inequality is one that is not
dominated by any other valid inequality.
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Polyhedral Theory

Any maximal valid inequality for S defines a nonempty face of
conv(S), and the set of maximal valid inequalities contains all of
the facet-defining inequalities for conv(S).
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Polyhedral Theory

Strengthening Inequalities
Theorem (Diophantos): The linear equation

Pn
j=1 �jxj = �0, where

�j 2 Z (j = 0; 1; : : : ; n) has a solution x 2 Zn if and only if the
greatest common divisor of �j (j = 1; 2; : : : ; n) divides �0 in
integers.
Example: Let 3x1 + 6x2 � 14 be the valid inequality for S. The
objective is to find stronger valid inequality that supports S.
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Polyhedral Theory

Strengthening Inequalities - Lifting
Definition: Let the inequality

Pn
j=1 �jxj � �0 be given, where

�j 2 R+ (j = 0; 1; : : : ; n) and x 2 Bn. If for some �k > 0 the
inequality

Pn
j=1 �jxj +�kxk � �0 is valid, then it is said to have

been lifted from the original inequality with respect to xk.
Algorithm:
Repeat for k = 1; 2; : : : ; n:

1 Set xk = 1 and denote �k = max
xk2B

Pn
j=1 �jxj � �0

2 Set �k = �0 � �k

3 Replace �k by �k +�k

4 The inequality
Pn

j=1 �jxj � �0 is lifted with respect to
variable xk

The inequality
Pn

j=1 �jxj � �0 is lifted with respect to all variables.
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Polyhedral Theory

Strengthening Inequalities - Lifting
Example: Lift the inequality 4x1 + 5x2 + 6x3 + 8x4 � 13, where
xj 2 B (j = 1; 2; 3; 4).

x1 = 1! �1 = 12! �1 = 1! �1 = 5! 5x1+5x2+6x3+8x4 � 13

x2 = 1! �2 = 13! �2 = 0! �2 = 5! 5x1+5x2+6x3+8x4 � 13

x3 = 1! �3 = 11! �3 = 2! �3 = 8! 5x1+5x2+8x3+8x4 � 13

x4 = 1! �4 = 13! �4 = 0! �4 = 8! 5x1+5x2+8x3+8x4 � 13
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Polyhedral Theory

Strengthening Inequalities - Variable fixing
Example: Let 2x1 + 3x2 + 4x3 � 15x4 � 2 with
xj 2 B (j = 1; 2; 3; 4).
If x4 = 1 the inequality cannot be satisfied ! feasible solutions
exist if variable is fixed x4 = 0.

Example: Let 20x1 + 5x2 + 1x3 � 8x4 � 7 with
xj 2 B (j = 1; 2; 3; 4).
Fixing x1 = 1.

Example: Let x1 + x2 + 3x3 = 4 with xj 2 B (j = 1; 2; 3).
Because x3 = 0 is impossible, variable is fixed x3 = 1. Then, the
equation is reduced to x1 + x2 = 1.
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Polyhedral Theory

Strengthening Inequalities - Gomory cut
Let S = fx 2 Zn+ : �Tx = �0g, where �j 2 R (j = 0; 1; : : : ; n). Let
us select some d 2 N, then each �j is possible to express as

�j = �jd+ �0j ; (273)

where �j =
�
�j

d

�
and �0j = �j mod d. Thus �j 2 Z and �0j 2 h0; d).

Then, the equation nX
j=1

�jxj = �0 (274)

can be written as
nX
j=1

(�jd+ �0j)xj = �0d+ �00 (275)

or
d(

nX
j=1

�jxj � �0) = �00 �
nX
j=1

�0jxj : (276)
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Polyhedral Theory

Strengthening Inequalities - Gomory cut
Because on left-hand side value in (276) is the integer multiple of d,
right-hand side must be also integer value. Due to �00 2 h0; d) andPn

j=1 �
0
jxj � 0, right-hand side value cannot be positive multiple of

d, i.e. it must be non-positive. Hence, left-hand side value must be
non-positive as well.

Fractional Gomory cut:

�00 �
nX
j=1

�0jxj � 0 !
nX
j=1

�0jxj � �00 (277)

All-integer Gomory cut:
nX
j=1

�jxj � �0 � 0 !
nX
j=1

�jxj � �0 (278)

Jan Fábry Combinatorial Optimization 109 / 153



Polyhedral Theory

Strengthening Inequalities - Gomory cut
Example: Let S = fx 2 Z3

+ : 37x1 � 68x2 + 78x3 � 141g. Find
a stronger valid inequality for S.
Transformation to the equation 37x1 � 68x2 + 78x3 + x4 = 141

Selection of d = 12

37 = 3:12 + 1

�68 = �6:12 + 4

78 = 6:12 + 6

1 = 0:12 + 1

141 = 11:12 + 9

Fractional Gomory cut: x1 + 4x2 + 6x3 + x4 � 9

All-integer Gomory cut: 3x1 � 6x2 + 6x3 � 11
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Solving Problems - Methods & Algorithms

Unimodularity
Definition: A square, integer matrix A is called unimodular if its
determinant det(A) = �1. An integer matrix A is called totally
unimodular if every square, nonsingular submatrix of A is
unimodular.
Observation: If matrix A is totally unimodular, aij 2 f+1;�1; 0g
for all i; j.
Theorem (sufficient condition): A matrix A is totally unimodular if

aij 2 f+1;�1; 0g for all i; j
each column contains at most two nonzero coefficients
the rows of A can be partitioned into two sets such that
▶ if a column has two coefficients of the same sign, their rows are

in different sets
▶ if a column has two coefficients of different signs, their rows are

in the same set
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Solving Problems - Methods & Algorithms

Unimodularity
Let the following linear programming problem with integral data
A; b be given:

zLP = maxfcTx : Ax � b; x 2 Rn+g: (279)

A vector of basic variables can be expressed as

xB = B�1b =
Badj

det(B)
b; (280)

where B is basis, B�1 its inverse and Badj is the adjoint matrix of
B (the transpose of the cofactor matrix of B).
Observation: If the optimal basis B is unimodular, then the
optimum solution is integral.
Proposition: If matrix A is totally unimodular, then the optimum
solution is integral.
Examples: transportation problem, flow problem, ...
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Relaxation

Definition: Let the following integer programming problem (IP) be
given:

zIP = maxfcTx : x 2 S � Zn+g: (281)

The problem (R)
zR = maxfdTx : x 2 X � Rn+g (282)

is a relaxation of (IP) if
S � X

dTx � cTx for all x 2 X.

Proposition: If (R) is a relaxation of (IP) then zR � zIP, i.e. zR is
the upper bound for zIP.
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Relaxation

Linear Programming Relaxation
Definition: Let the following integer programming problem (IP) be
given:

zIP = maxfcTx : Ax � b; x 2 Zn+g: (283)

The problem (LP)

zLP = maxfcTx : Ax � b; x 2 Rn+g (284)

is a linear programming relaxation of (IP).

In case of binary integer programming problem (BIP)

zBIP = maxfcTx : Ax � b; x 2 Bng;B = f0; 1g (285)

a linear programming relaxation is defined as

zLP = maxfcTx : Ax � b; 0 � xj � 1; j = 1; 2; : : : ; ng: (286)
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Relaxation

Linear Programming Relaxation
Definition: The absolute integrality gap is defined as the difference

Gap = zLP � zIP (287)

and for zIP 6= 0, the relative integrality gap is defined as

Gap% =
zLP � zIP

jzIPj
100%: (288)

Linear programming relaxation can be also written as

zLP = maxfcTx : x 2 Qg; (289)

where S = fx : Ax � b; x 2 Zn+g � conv(S) � Q.
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Relaxation

Lagrangian Relaxation
Definition: Let the following integer programming problem (IP) be
given:

zIP = maxfcTx : Ax � b; x 2 Zn+g: (290)

The problem can be rewritten as
zIP = maxfcTx : A1x � b1; A2x � b2; x 2 Zn+g; (291)

where A =

 
A1

A2

!
; b =

 
b1

b2

!
.

A1x � b1 are m1 “complicating constraints” and
A2x � b2 are m2 “nice constraints”.

Now for any � 2 Rm1

+ , the problem (LR(�))

zLR(�) = maxfcTx+ �T(b1 � A1x) : A2x � b2; x 2 Zn+g (292)

is called the Lagrangian relaxation of (IP) with respect to
A1x � b1.
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Relaxation

Lagrangian Relaxation
Proposition: LR(�) is a relaxation of (IP) for all � � 0,
i.e. zLR(�) � zIP for all � � 0.

Definition: The least upper bound available from the infinite
family of relaxations f(LR(�)g��0 is zLR(�

�), where �� is an
optimal solution to the problem (LD)

zLD = min
��0

zLR(�): (293)

Problem (LD) is called the Lagrangian dual of (IP) with respect
to the constraints A1x � b1.
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Exact Methods

Cutting-Plane Algorithm
The method is derived from the simplex method.
Cutting-plane (or simply a cut) is a linear constraint that does not
exclude any integer feasible solution.

1 Solve the linear programming relaxation.
2 If the optimal solution is integer, go to Step 5.
3 Select the variable which optimal value is not integer and build

a Gomory cut using (277). It is added to simplex tableau as

�
nX
j=1

�0jxj + xn+1 = ��00; (294)

where xn+1 is a slack variable.
4 Use the dual simplex algorithm to obtain the optimal solution.

Go to Step 2.
5 End
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Exact Methods

Branch and Bound Algorithm
It is an enumerative algorithm.
Proposition: Let the problem zIP = maxfcTx : x 2 Sg be given. Let
S = S1[S2[ : : :[SK be a decomposition of S into smaller sets,
and let zk = maxfcTx : x 2 Skg for k = 1; 2; : : : ;K. Then
zIP = maxk z

k.
Notation:
M is a sequence of problems to be solved in particular branches of
an enumeration tree,
x� is the best found integer solution,
z� = cTx� is the best objective value.
Algorithm:

1 Initial settings
M = (LP ); LP is a linear programming relaxation,
x� is not defined,
z� = �1.
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Exact Methods

Branch and Bound Algorithm
2 Selection of the problem to be solved

If M = () then go to Step 5
else select the last problem in the sequence M .

3 Solution of selected problem
(a) If no feasible solution exists then remove the problem from M

and go to Step 2.
(b) If the optimal solution x0 is found with the objective value z0

then
(b1) if z0 � z� then remove the problem from M and go to Step 2,
(b2) if z0 > z� and x0 is integer then set x� = x0; z� = z0, remove

the problem from M and go to Step 2,
(b3) if z0 > z� and x0 is not integer then go to Step 4.
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Exact Methods

Branch and Bound Algorithm
4 Branching

Select the variable xk the optimal value of which is not integer.
Copy the last solving problem and add it to the end of the
sequence M together with the constraint

xk � bx0kc: (295)

Add the constraint

xk � bx0kc+ 1 (296)

to the last but one problem in M .
Go to Step 2.

5 End
Print the optimum integer solution x� and the optimum
objective value z�.
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Exact Methods

Branch and Bound Algorithm
Proposition: The enumeration tree can be pruned at the node if
any one of the following three conditions holds:

problem is infeasible,
optimal solution x0 is integer,
it is valid z0 � z�.

In case of binary enumeration tree (if n binary variables are given),
n is a maximal depth of the tree and 2n is a maximal number of
leaves of the tree.
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Exact Methods

Branch and Bound Algorithm
Node Selection

A priori rules
▶ depth-first search plus backtracking (LIFO)
▶ breadth-first search

Adaptive rules
▶ best upper bound

Branching Variable Selection
Most infeasible branching
Strong branching
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Exact Methods

Branch and Bound Algorithm
Improvements

Branch and Cut Method
Branch and Bound Method with Cutting Plane Method are
combined to tighten the linear programming relaxations at
nodes of enumeration tree.
Branch and Price Method
It is used for IP and MIP problems with many variables. The
method is a hybrid of Branch and Bound method and Column
Generation Algorithm.
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Computational Complexity

Complexity of Algorithms
The size of an instance:

linear programming
m: : :number of constraints
n : : :number of variables
graph modelling
jU j : : :number of nodes
jEj : : :number of arcs

Computational complexity of the algorithm is the function of the
size of an instance that the algorithm solves, e.g. f(n).
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Computational Complexity

Complexity of Algorithms
Let elementary computer operation take 1 ns. The following table
shows the growth of computational time for various functions
depending on a size of an instance.

f(n)
n (size of instance)

10 20 50 100 1000
n 10 ns 20 ns 50 ns 100 ns 1µs

n logn 10 ns 26 ns 85 ns 200 ns 3µs
n2 100 ns 400 ns 2:5µs 10µs 1ms

n3 1µs 8µs 125µs 1ms 1 s

2n 1µs 1ms 13 days 1013 years -
3n 59µs 4 s 107 years - -
n! 4ms 77 years - - -
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Computational Complexity

Complexity of Algorithms
We are interested in the asymptotic rate of growth of the
complexity of the algorithm.
Definition: Let f(n); g(n) be functions from the positive integers to
the positive reals.

We write f(n) = O(g(n)) if there exists a constant c > 0 such
that, for large enough n; f(n) � cg(n) (the big O notation).
We write f(n) = 
(g(n)) if there exists a constant c > 0 such
that, for large enough n; f(n) � cg(n) (the big omega
notation).
We write f(n) = �(g(n)) if there exist constants c; c0 > 0 such
that, for large enough n; cg(n) � f(n) � c0g(n) (the big theta
notation).

Polynomial algorithms: n; n2; n3; logn; n logn
Non-polynomial algorithms: 2n; en; n!
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Computational Complexity

Complexity Classes
Class P
It is a class of decision problems that can be solved in polynomial
time. The decision problem of size n is in P if there exists the
algorithm with f(n) = O(np) fore some fixed p.
Class PO
It is a class of optimization problems that can be solved in
polynomial time. The optimization problem of size n is in PO if
there exists the algorithm with f(n) = O(np) fore some fixed p.

Some problems solvable in polynomial time.
Minimal spanning tree.
Shortest path problem.
Maximal flow problem.
Assignment problem.
Linear programming problem.
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Computational Complexity

Complexity Classes
Class NP
It is a class of decision problems that can be solved by
a nondeterministic polynomial algorithm consisting in two
stages:

1 Guessing (nondeterministic) stage
The solution is generated.

2 Checking stage
It is proved by a polynomial algorithm whether the solution is
feasible.

The decision problem is in NP if a positive decision can be
checked in polynomial time.

If a problem is in P then it is in NP, i.e. P � NP.

Examples of NP-solvable problem: finding of the Hamiltonian
cycle in given graph, finding of a feasible solution of MIP, ...
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Computational Complexity

Complexity Classes
Class NPO
The optimization problem is in NPO if its decision version is in
NP.

If a problem is in PO then it is in NPO, i.e. PO � NPO.

Definition: Decision problem A is polynomially reducible to
decision problem B if there exists a polynomial function
transforming definition of problem A to definition of problem B

such that from the solution of B, it is possible to derive the
solution of A.

If decision problem A is reducible to decision problem B then, if we
have the algorithm to solve B, it can be used to solve A.

Decision problem A is a special instance of decision problem B,
i.e. B is more general and, therefore, more difficult.
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Computational Complexity

Complexity Classes
Proposition: If A is polynomially reducible to B and B 2 P,
then A 2 P.
Proposition: If A is polynomially reducible to B and B 2 NP, then
A 2 NP.

Class NPC
Decision problem A 2 NP is said to be NP-complete if all
problems in NP can be polynomially reduced to A.

Proposition: If A 2 NPC is polynomially reducible to B 2 NP,
then B 2 NPC.
Corollary: In order to prove that a problem is NP-complete, we
must show:

that the problem is in NP and
that any known NP-complete problem is reducible to the
problem.
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Computational Complexity

Complexity Classes
Proposition: If P \NPC 6= ∅ then P = NP.
Corollary: If there is a polynomial algorithm to solve any
NP-complete problem then using the reducibility we will be able
to solve all problems in NP in polynomial time.

Examples of NP-complete problems (some of them are binary
versions of optimization problems):

Binary programming feasibility problem.
Set partitioning feasibility problem.
Knapsack lower-bound feasibility problem.
Finding of Hamiltonian cycle.
Travelling salesman upper-bound feasibility problem.
Quadratic assignment upper-bound feasibility problem.
Partition problem.
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Computational Complexity

Complexity Classes
Class NPH
An optimization problem is NP-hard if its decision version is in
NPC.

Examples of NP-hard problems:
IP problem.
Knapsack problem.
TSP.
Minimal Steiner tree.
Quadratic assignment problem.
Container transportation problem.
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Heuristics & Metaheuristics

Approximation algorithms:
Heuristic
It is a procedure that determines good or near-optimal
solutions to a specific optimization problem.
Metaheuristic
It is an approach that can be adapted to solve a wide variety
of problems.

Basic principles of using the approximation method:
it is used to solve NPC and NPH problems,
it does not guarantee that an optimal solution will be found
(it provides so called suboptimal solution),
it is a polynomial algorithm,
it can be easily designed to solve a specific problem.
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Heuristics & Metaheuristics

Heuristics for TSP
Classification of algorithms:

Constructive heuristics.
Merge heuristics.
Improvement heuristics.

Assumption: the matrix of distances between all pairs of nodes is
given (complete graph is defined)
The Nearest Neighbor Algorithm

1 Select any node as the initial one of the tour.
2 Find the nearest node (not selected before) to the last node

and add it to the tour. If it is impossible (all nodes have been
selected) then add the initial node to the tour (Hamiltonian
cycle is created) and go to Step 4.

3 Go to Step 2.
4 End.

Jan Fábry Combinatorial Optimization 140 / 153



Heuristics & Metaheuristics

Savings Algorithm (Clarke and Wright)
1 Compute savings

sij = ci1 + c1j � cij for
i = 2; 3; : : : ; n

j = 2; 3; : : : ; n
i 6= j: (297)

2 Create (n� 1) vehicle routes (1; i; 1) for i = 2; 3; : : : ; n and
order the savings in a non-increasing fashion.

Parallel version
3 (Best feasible merge)

Starting from the top of savings list, execute the following.
Given a saving sij , determine whether there exist two routes,
one containing arc (1; j) and the other containing (i; 1), that
can feasibly be merged. If so, combine these two routes by
deleting (1; j) and (i; 1) and introducing (i; j).
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Savings Algorithm (Clarke and Wright)
Sequential version

3 (Route extension)
Consider the route (1; i; : : : ; j; 1). Determine the first saving
ski or sjl such that k and l are included in other routes
containing arc (k; 1) or containing arc (1; l).

4 Implement the merge and repeat this operation until
Hamiltonian cycle is created.

Insertion Algorithm
1 Select any node as the initial one, e.g. node 1.
2 Find the farthest node s to the initial one and create the

vehicle route (1; s; 1).
3 Execute the most effective insertion of not-included nodes to

existing route (minimizing the increase of the length of the
route) until Hamiltonian cycle is created.
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Double Spanning-Tree Heuristic
Let a complete graph G = fU;Eg be given.

1 Find the minimal spanning tree G0 = fU;E0g of G.
2 Construct the multigraph G� from G0 by duplicating each arc

from E0.
3 Find an Eulerian cycle Q on G�.
4 Delete all node repetitions from Q except for the final return

to the first node. The resulting node sequence T is
a Hamiltonian route on G.
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Christofides’ Heuristic (Spanning-Tree/Perfect-Matching)
Let a complete graph G = fU;Eg be given.

1 Find the minimal spanning tree G0 = fU;E0g of G.
2 Find the minimal perfect matching on the induced subgraph
G(U0) of G, where U0 � U is the set of nodes of U that are of
odd degree in G0. Let M be the arc set of the perfect matching.

3 Find an Eulerian cycle Q on the multigraph G� = fU;E0[Mg.
4 Delete all node repetitions from Q except for the final return

to the first node. The resulting node sequence T is
a Hamiltonian route on G.
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Cycle Merging Heuristic
Let a complete graph G = fU;Eg be given.

1 Find the initial system of cycles F (e.g. using minimal perfect
matching; if the size of U is odd, one of cycles contains
3 nodes).

2 Merge two cycles �� and �� using the following metrics:

D���� = min
�;�2F

D�� = min
i;k2�
j;l2�

(cij + ckl � cik � cjl): (298)

Let 
 be the cycle created by merging operation.
3 Exclude �� and �� from F , include 
 in F .
4 If 
 is not the Hamiltonian cycle then go to Step 2.
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Exchange Heuristic (Lin & Kernighen)
Let a complete graph G = fU;Eg be given.

1 Let the Hamiltonian cycle be found using any constructive
or merge heuristic.

2 Exchange two non-incident arcs from the route for other two
non-incident arcs to obtain the Hamiltonian cycle.

3 If the exchange operation improves the solution, realize it.
4 Repeat the process of all possible exchanges while any

improvement is achieved. Terminate the process when no
improvement is possible.

5 Achieved Hamiltonian cycle is the local optimal (2-opt) route.
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Metaheuristics
Notation in algorithms:
x is a feasible solution to the given problem
X is a feasible solution space, i.e. a set of all x
N(x) is a neighborhood of solution x (a set of close solutions)
f(x) is a minimization objective function
x� is the currently best found solution
Local Search (LS)

1 Choose an initial solution x 2 X and set x� = x.
2 Define the neighborhood N(x) � X and evaluate all solutions.
3 Let x0 be the best solution from N(x).

If f(x0) < f(x�) then set x� = x0 and x = x0, stop otherwise.
4 If the stopping rule is not met go to Step 2.
5 Solution x� is a local minimum solution.
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Tabu Search (TS)
TL is the sequence of forbidden solutions (Tabu List)
MaxSize is the maximal size of Tabu List

1 Choose an initial solution x 2 X and set x� = x.
Adjust TL = fxg.

2 Define the neighborhood N(x) � X n TL and evaluate all
solutions.

3 Let x0 be the best solution from N(x). Set x = x0.
If f(x0) < f(x�) then set x� = x0.

4 TL = TL[ fxg. If jTLj > MaxSize then remove the first
solution from TL.

5 If the stopping rule is not met go to Step 2.
6 Solution x� is the best found solution.
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Threshold Accepting Algorithm (TA)
T is the threshold value for accepting worse solutions
T0 is the initial value of threshold
r 2 (0; 1) is the rate of threshold reduction

1 Choose an initial solution x 2 X and set x� = x.
Adjust T = T0.

2 Repeat n-times:
▶ choose x0 2 N(x),
▶ if f(x0)� T < f(x) then x = x0,
▶ if f(x0) < f(x�) then x� = x0.

3 If the stopping rule is not met then execute the reduction
T = rT and go to Step 2.

4 Solution x� is the best found solution.
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Simulated Annealing Method (SIAM)
T is the temperature value
T0 is the initial temperature value
r 2 (0; 1) is the rate of temperature reduction (cooling rate)

1 Choose an initial solution x 2 X and set x� = x.
Adjust T = T0.

2 Repeat n-times:
▶ choose x0 2 N(x),
▶ if f(x0) < f(x) then x = x0,
▶ if f(x0) � f(x) then x = x0 with the probability e�

�

T , where
� = f(x0)� f(x),

▶ if f(x0) < f(x�) then x� = x0.
3 If the stopping rule is not met (or the process has not yet

frozen) then execute the reduction T = rT and go to Step 2.
4 Solution x� is the best found solution.
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Genetic Algorithm (GA)
Definitions:
Population R � X is a finite set of feasible solutions.
Fitness value f(x) is the evaluation of solution x 2 R.
Parents selection is a selection of certain pair of solutions
(parents) x; y 2 R based on their fitness value.
Crossover is an operation of combining parents to produce one
or two new solutions (offspring).
Mutation is a random modification of the offspring.

The idea of parents selection is to choose better solution with
higher probability. Let us assume fitness f(x) is maximized. Then
the probability of the selection of parent x is given as

f(x)X
8y2R

f(y)
(299)
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Genetic Algorithm (GA)
Let parent x be encoded as x1x2 : : : xr, parent y be encoded as
y1y2 : : : yr and child z be encoded as z1z2 : : : zr.

Crossover of parents
▶ 1-point crossover

Child #1: x1 : : : xpyp+1 : : : yr,
Child #2: y1 : : : ypxp+1 : : : xr.

▶ 2-point crossover
Child #1: x1 : : : xpyp+1 : : : yqxq+1 : : : xr,
Child #2: y1 : : : ypxp+1 : : : xqyq+1 : : : yr.

▶ Uniform crossover
Child: z1z2 : : : zr, where zi 2 fxi; yig; i = 1; 2; : : : ; r.

Mutation of a child
▶ 1-point mutation

Modified child: z1 : : : zp�1z�pzp+1 : : : zr, where z�p 6= zp.
▶ 2-point mutation

Modified child: z1 : : : zp�1zqzp+1 : : : zq�1zpzq+1 : : : zr.
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Ant Colony Optimization (ACO)
The method is based on swarm intelligence.
Each ant tries to find a route between its nest and a food
source.
On the path, ants lay down a pheromone trail.
Ants prefer to take those paths where there is a larger amount
of pheromone.
The pheromone trails on the longer paths evaporate faster
than on the shorter paths.
Pheromone evaporation also has the advantage of avoiding the
convergence to a local optimal solution.
The idea of the ACO is to mimic this behavior with “simulated
ants” (agents) walking around the graph representing the
problem to solve.
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